└─ 【稀有资料】2017年以来的计算机视觉相关顶会论文合辑 ->
├─ ↑↑↑点左上角头像订阅,获取更多资源↑↑↑ ->
├─ Paper ->
├─ NIPS2020 ->
├─ wav2vec 2.0 A Framework for Self-Supervised Learning of Speech Representations.pdf - 858.33 KB
├─ f-GAIL Learning f-Divergence for Generative Adversarial Imitation Learning.pdf - 1.3 MB
├─ f-Divergence Variational Inference.pdf - 405.86 KB
├─ Zero-Resource Knowledge-Grounded Dialogue Generation.pdf - 389.81 KB
├─ Zap Q-Learning With Nonlinear Function Approximation.pdf - 735.91 KB
├─ Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling.pdf - 1.1 MB
└─ Your Classifier can Secretly Suffice Multi-Source Domain Adaptation.pdf - 1.97 MB
├─ NIPS2019 ->
├─ vGraph A Generative Model for Joint Community Detection and Node Representation Learning.pdf - 297.1 KB
├─ q-means A quantum algorithm for unsupervised machine learning.pdf - 335.06 KB
├─ muSSP Efficient Min-cost Flow Algorithm for Multi-object Tracking.pdf - 867.26 KB
├─ k-Means Clustering of Lines for Big Data.pdf - 815.48 KB
├─ iSplit LBI Individualized Partial Ranking with Ties via Split LBI.pdf - 861.95 KB
├─ Zero-shot Learning via Simultaneous Generating and Learning.pdf - 804.06 KB
└─ Zero-shot Knowledge Transfer via Adversarial Belief Matching.pdf - 2.28 MB
├─ NIPS2017-2018 ->
├─ NIPS2018 ->
├─ rho-POMDPs have Lipschitz-Continuous epsilon-Optimal Value Functions.pdf - 407.06 KB
├─ e-SNLI Natural Language Inference with Natural Language Explanations.pdf - 108.37 KB
├─ cpSGD Communication-efficient and differentially-private distributed SGD.pdf - 1.08 MB
├─ Zeroth-order (Non)-Convex Stochastic Optimization via Conditional Gradient and Gradient Updates.pdf - 376.4 KB
├─ Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization.pdf - 609.41 KB
├─ Zero-Shot Transfer with Deictic Object-Oriented Representation in Reinforcement Learning.pdf - 376.11 KB
└─ With Friends Like These, Who Needs Adversaries .pdf - 1.15 MB
└─ NIPS2017 ->
├─ k-Support and Ordered Weighted Sparsity for Overlapping Groups Hardness and Algorithms.pdf - 477.41 KB
├─ f-GANs in an Information Geometric Nutshell.pdf - 573.5 KB
├─ Zap Q-Learning.pdf - 4.83 MB
├─ Z-Forcing Training Stochastic Recurrent Networks.pdf - 330.75 KB
├─ YASS Yet Another Spike Sorter.pdf - 1.65 MB
├─ Working hard to know your neighbor's margins Local descriptor learning loss.pdf - 937.9 KB
└─ Wider and Deeper, Cheaper and Faster Tensorized LSTMs for Sequence Learning.pdf - 2.92 MB
├─ ICML2020-2021 ->
├─ ICML2021 ->
├─ iDARTS Differentiable Architecture Search with Stochastic Implicit Gradients.pdf - 367.18 KB
├─ f-Domain Adversarial Learning Theory and Algorithms.pdf - 815.97 KB
├─ Zoo-Tuning Adaptive Transfer from A Zoo of Models.pdf - 1.87 MB
├─ Zeroth-Order Non-Convex Learning via Hierarchical Dual Averaging.pdf - 401.59 KB
├─ Zero-Shot Text-to-Image Generation.pdf - 5.77 MB
├─ Zero-Shot Knowledge Distillation from a Decision-Based Black-Box Model.pdf - 3.53 MB
└─ Z-GCNETs Time Zigzags at Graph Convolutional Networks for Time Series Forecasting.pdf - 910.25 KB
└─ ICML2020 ->
├─ “Other-Play” for Zero-Shot Coordination.pdf - 1.66 MB
├─ p-Norm Flow Diffusion for Local Graph Clustering.pdf - 348.38 KB
├─ k-means++ few more steps yield constant approximation.pdf - 323.67 KB
├─ dS^2LBI Exploring Structural Sparsity on Deep Network via Differential Inclusion Paths.pdf - 2.99 MB
├─ Zeno++ Robust Fully Asynchronous SGD.pdf - 410.09 KB
├─ XtarNet Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning.pdf - 531.49 KB
└─ XTREME A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalisation.pdf - 835.81 KB
├─ ICML2017-2019 ->
├─ ICML2019 ->
├─ kernelPSI a Post-Selection Inference Framework for Nonlinear Variable Selection.pdf - 428.22 KB
├─ Zero-Shot Knowledge Distillation in Deep Networks.pdf - 1.57 MB
├─ Zeno Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance.pdf - 442.55 KB
├─ Width Provably Matters in Optimization for Deep Linear Neural Networks.pdf - 725.1 KB
├─ Why do Larger Models Generalize Better A Theoretical Perspective via the XOR Problem.pdf - 720.45 KB
├─ White-box vs Black-box Bayes Optimal Strategies for Membership Inference.pdf - 1.62 MB
└─ When Samples Are Strategically Selected.pdf - 258.49 KB
├─ ICML2018 ->
├─ signSGD Compressed Optimisation for Non-Convex Problems.pdf - 640.72 KB
├─ prDeep Robust Phase Retrieval with a Flexible Deep Network.pdf - 2.62 MB
├─ oi-VAE Output Interpretable VAEs for Nonlinear Group Factor Analysis.pdf - 1.25 MB
├─ Yes, but Did It Work Evaluating Variational Inference.pdf - 641.95 KB
├─ Which Training Methods for GANs do actually Converge .pdf - 528.23 KB
├─ Weightless Lossy weight encoding for deep neural network compression.pdf - 563.49 KB
└─ Weakly Submodular Maximization Beyond Cardinality Constraints Does Randomization Help Greedy .pdf - 4.81 MB
└─ ICML2017 ->
├─ “Convex Until Proven Guilty” Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions.pdf - 917.05 KB
├─ meProp Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting.pdf - 387.83 KB
├─ iSurvive An Interpretable, Event-time Prediction Model for mHealth.pdf - 645.85 KB
├─ Zonotope Hit-and-run for Efficient Sampling from Projection DPPs.pdf - 4.26 MB
├─ ZipML Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning.pdf - 829.44 KB
├─ Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning.pdf - 1.37 MB
└─ Zero-Inflated Exponential Family Embeddings.pdf - 431.86 KB
├─ 领取最高50T空间+优惠券.txt - 770 B
├─ 新手必看!快速领3T空间指南+会员优惠券.docx - 110.2 KB
└─ 2017年以来的计算机视觉相关顶会论文合辑,包括ICCV CVPR ECCV ICML ICLR NeurIPS,总计22835篇论文.txt - 0 B
微信视频投屏:
1、在手机端微信中会拦截投屏功能,需要首先点击视频页面右上角“...”图标,选择“在浏览器中打开”,在列表中选取具备投屏功能的浏览器,推荐使用QQ浏览器
2、在新打开的浏览器视频页面里,点击播放按钮,可在视频框右上角看到一个“TV”投屏小图标,只要电视和手机在同一WiFi环境下,点击按钮即刻享受大屏观感!
本站资源声明:
1、如需免费下载云盘资源,请先点击页面右上角的“登录”按钮,注册并登录您的账号后即可查看到网盘资源下载地址;
2、本站所有资源信息均由网络爬虫自动抓取,以非人工方式自动筛选长效资源并更新发布,资源内容只作交流和学习使用,本站不储存、复制、传播任何文件,其资源的有效性和安全性需要您自行判断;
3、本站高度重视知识产权保护,如有侵犯您的合法权益或违法违规,请立即向网盘官方举报反馈,并提供相关有效书面证明与侵权页面链接联系我们处理;
4、作为非盈利性质网站,仅提供网络资源的免费搜索和检测服务,无需额外支付其他任何费用,学习和交流的同时请小心防范网络诈骗。